
Don’t Try This at Home:

A Layman’s Guide to Security 

Vulnerabilities of the Original 802.11 

Standard

Dmitri “Dima” Varsanofiev
cooltech[AT]varsanofiev.com

www.varsanofiev.com/inside/802.11security.ppt



Key Points

� IANAC (I Am Not A Cryptographer)
� All content of the presentation is work of other people 

(reference list is at the end)

� Just like the electrical grid changes at home, 
cryptography design is better left to professionals
� At the very least, call an inspector afterwards - but before 

powering up the circuit!

� Wisdom ignored by the original 802.11 group

� Professionals have already fixed the problems 
discussed here
� Buy WPA (802.11i) gear 



802.11 Security Story

� Basic 802.11 (1999) defines “wireless equivalent 
privacy” (WEP)
� Uses RC4 cipher

� Multiple holes found; group alerted by Jesse Walker

� WEP holes fixed in so called TKIP scheme

� A clean RSN encryption scheme is introduced that 
uses new AES cipher

� TKIP and RSN are defined in the 802.11i standard

� Industry body (WiFi) defined WPA security standard 
that mostly matches the 802.11i

� 802.11i and WPA are outside of scope of this talk



Basic Crypto Terminology

� Encryption turns Plaintext into Ciphertext 
using a secret Key
� Decryption is the inverse transform
� If the key is the same for encryption and 
decryption (“shared secret”, known to both sides), 
the algorithm is “symmetric”

� Authentication provides a way to check that 
the message has not been altered
� Usually in the form of a cryptographic checksum -
Message Authentication Code (MAC, called MIC in 
the 802.11i)



Basic Terminology Continued

� Crypto algorithm usually consists of a 
Cipher and Mode
� Cipher is a way to randomize data. 
Examples: DES, AES, RC4, …

� Mode is a way to apply the cipher to the 
plaintext

� Simplest mode is Electronic Code Book, or 
ECB: plaintext is XORed with pseudo-
random “keystream”



ECB Mode or “Vernam Cipher”

Pseudo-random 

number generator
Encryption Key K

Plaintext data byte 

p

Random byte b

⊕⊕⊕⊕
Ciphertext data byte 

p

Decryption works the same way: p = c ⊕⊕⊕⊕ b

From an original slide by Jesse Walker

Keystream



Application of ECB to Packet 
Networks

� Packets can be lost
� Cipher has to be restarted for each packet

� Re-use of keystream is extremely bad!
� If we can guess content of one packet, we can recover the 

keystream – and read all the packets with the same 
keystream 

� Simply XORing two packets with the same keystream yields 
a lot of information about the data

� Confucius says, “It is better to transmit packet 
unencrypted than to reuse the keystream”
� In the former case, only the data in this packet is divulged
� In the latter case, information about keys is divulged – this 

and a lot of other packets can be decrypted!



Initialization vector

� Unique data added to each packet and used 
to initialize pseudo-random generator to 
make the keystream unique
� Called “initialization vector” (IV), “salt”
� Must not be reused with the same key!

� To avoid the IV reuse certain mechanisms 
should be included into crypto exchange 
� Some way to avoid using the same IV with the 
same key

� Some way to force a key change once IV space is 
exhausted



IV Flaw in WEP 

� Key is shared by all stations in the network
� No standard way to synchronously change the key

� IV contains only 24 bits
� No IV synchronization techniques are defined across multiple 

stations

� Due to the “birthday paradox”, with randomly chosen 
IVs, a “collision” (IV reuse) will very probably happen 
after about O(212) = 5000 packets
� Many implementations use same IV sequence (usually 0, 1, 

2, …) for all stations thus providing even more collisions �



More Basics: Replay Attack

� A replay attack is simply a re-transmission of the previously 
recorded message later in an attempt to harm the recipient

� How can it harm?
� By divulging information about the system being attacked. For 

example, one can find out if some PC is powered on by re-sending 
messages to it and seeing if a response still comes

� By exploiting the replay in a combination with some other 
vulnerability. For example, if A has established a secure channel 
with B, and we can replay to B A’s disconnect message, we might 
have a chance of attack against A pretending to be B. For more 
spectacular opportunities, see WEP examples later.

� Typical prevention of this attack is a protected (encrypted or 
checksummed) timestamp of some kind



Flaw in the Join Exchange

� To join the 802.11 network, station has to 
“authenticate” itself
� Open authentication

� Station sends a message “I am a good guy”
� Access point replies, “Yeah, you are a good guy” ☺
� Think it is bad?

� “Shared key” authentication is worse!
� Station sends a message, “I am a good guy”
� Access point replies, “Show me that you know the key – here is 
128 bytes for you to encrypt”

� Station sends an encrypted copy
� Access point compares and says, “You are a good guy”

� What is wrong in this picture?



Keystream is easy to get

� If an attacker can listen on to this exchange, (s)he will see:
� Plaintext in the second message
� Corresponding ciphertext in the third

� As we know, in WEP ciphertext = plaintext XOR keystream
� But … ciphertext XOR plaintext = keystream!

� We just got a way to encrypt some short frame and inject it into
the system
� Helps as a basis for inductive attacks (detailed below)
� Useful for network study

� Send a frame that will cause a reply (say, ARP), listen to reply
� Replies are predictable = more keystreams

� Never enable the “shared key” authentication
� Not useful for its original goal – as with one known keystream an 

attacker can always successfully authenticate anyhow ☺
� On-demand keystream by spoofing the access point



Replay Flaw in WEP

� Original 802.11 only carried a 
timestamp as a 12-bit frame number in 
the unencrypted header 
� Not protected

� Wide open for replay

� Combined with a weak design of the 
cryptographic checksum (next flaw), 
opens WEP up for elegant attacks



Crypto Checksum

� Encrypted frame in the original 802.11 WEP:

� Why do we need a checksum (ICV)?

� To prevent bit-flipping attacks



More Basics: Bit-flipping

� Take an encrypted message, and change one bit. With ECB, 
decryption of this message will yield plaintext with the 
corresponding bit changed

� If an attacker knows an IP address in the frame, (s)he can 
change the address to his own, replay the frame, and receive a 
decrypted message from an AP over the wire ☺

� Prevented by using a crypto checksum
� Checksum changes when bit changes
� On the receiving side, if the checksum does not match, message 

should be discarded
� Attacker now needs to change the desired bit(s) and the checksum 

bits simultaneously
� With many bits to change simultaneously, attack becomes 

impractical
� Only works if the checksum bit changes are not predictable



Weak Checksum in WEP

� WEP uses CRC-32 for crypto checksum
� Perfectly good for data integrity
� Unacceptable for cryptography

� CRC-32 is linear
� CRC (X^Y) = CRC (X) ^ CRC (Y)

� If an attacker flips the bits in the message, it is easy 
to flip the corresponding bits in the checksum
� NewICV = OldICV ^ ICV(modified bits)
� Carries through the encryption stage
� TCP checksum can be guessed with high probability

� Flip the address bits in the IP packet and receive it 
decrypted – No Key Knowledge Necessary ™



Inductive Attack (Bill Arbaugh)

� Take a short message with known keystream that 
solicits a response from the system
� Basis is provided by the Join sequence flaw

� Or look for a short message with a known plaintext (say, a 
DHCP request)

� Insert a byte into it just before the ICV

� Try all 256 byte values, adjust the ICV accordingly
� One will yield a response

� The known keystream is extended by one more byte

� Repeat



Ultimate Flaw (Shamir et al.)

� Ultimate defeat of the encryption is to recover the key in a 
reasonable amount of time

� WEP uses RC4 as a cipher
� Mantin and Shamir in 2001 figured out a way to easily 

distinguish between the RC4-encrypted data stream and a 
random data stream

� Confucius says, “If your cipher is a bad random number 
generator, it will be broken soon”

� In few months, multiple effective attacks on RC4 were 
suggested

� The simplest one will be explained (touched?) here, based on an 
article by Fluhrer, Mantin, Shamir
� Grossly simplified for presentation reasons. Actual attacks are 

similar in nature, but are significantly more complex



RC4

� Popular cipher still widely used
� Invented by Rivest in 1987, trade secret of RSA

� Leaked onto Internet in 1994 as “Alleged RC4”, or ARC4

� Convenient for implementation on a CPU
� Only byte-level operations are used, no bit shuffling

� For randomization uses an internal “state” array S of 
size N and two indices into this array, i and j 
(sometimes referred to as x and y)
� S is initially filled with a randomization of the key K of length 

L during so called “Key Scheduling Algorithm” (KSA)

� S is updated during the random number generation phse
(PRGA)



Details of the RC4

From an article by Fluhrer, Mantin, Shamir



Attack Assumptions

� First bytes of plaintext are known
� True for 802.11, as practically all encrypted frames are prefixed by 

an “LLC header” that consists of known bytes

� Part of the key is known, so we can look only at the “easy”
packets
� True for 802.11 WEP, as the RC4 key (K) in WEP is made by 

concatenating the 3-byte IV and the secret key – and all the IV bits 
are known

� For simplicity, we will assume that IV occupies first three bytes of K 
(in the actual WEP, the IV is appended to the key, making attack
explanation way harder)

� One can observe multiple packets with different “easy” keys
� True for 802.11 due to its wireless nature and varying IVs



Attack Idea

� First byte to be output (look at the PRGA):

� S[S[1]+S[S[1]]]

� What would the S values be?

� Let’s suppose we know A bytes of the secret key 
(initially A=0, of course)

� Wait for the packets with IV of the values (A+3, 
N-1, X) with a variety of Xs

� We can predict key setup behavior until step A+3

� Or learn that it is became randomized (“resolved”)



Key Expansion



Getting the Key

� If the subsequent key setup steps will change any of the first 
values of S, we will be in a “resolved” situation with near-
random output

� However, in the 5% cases these values will not be touched, so:
� S[1] = 0, S[S[1]] = A+3

� The output, S[S[1]+S[S[1]]] = K[A+3] 
� Bingo – we have just learned an extra key byte!

� If we observe enough frames with this type of IV, we will see a 
peak in distribution
� 60 frames give 50% probability
� Note that things are not that bad – these are special 60 frames!

� In practice, few million frames are sufficient to crack the 40-bit 
WEP key
� 128-bit key does not buy much extra protection – as the process 

has linear complexity



Practical Consequences

� Security of the “original” 802.11 (as defined in 1999) 
is not too bad if nobody is after you

� It is disastrous if somebody does want to get you!
� Resources required to breach the security are freely 

available to an amateur
� Time commitment is in minutes to hours

� OK for home use?
� Protects from casual or accidental browsing of non-

computer-savvy neighbors
� In my home, connects to the Internet side only, not the 

internal network

� Unacceptable for large businesses
� Use WPA (802.11i) gear



References

� Full bibliography is available at Bill Arbaugh’s site: 
http://www.cs.umd.edu/~waa/wireless.html

� 802.11 study by Jesse Walker (2000), Unsafe at any 
key size; An Analysis of the WEP encapsulation (link 
embedded)

� Bill Arbaugh’s inductive attack (2001), 
http://www.cs.umd.edu/~waa/attack/v3dcmnt.htm

� Key recovery by Scott Fluhrer, Itsik Mantin, and Adi
Shamir http://www.drizzle.com/~aboba/IEEE/ 

rc4_ksaproc.pdf


