Don’t Try This at Home:
A Layman’s Guide to Security
Vulnerabilities of the Original 802.11

Standard
\!'_

Dmitri "Dima” Varsanofiev
cooltech[AT]varsanofiev.com

www.varsanofiev.com/inside/802.11security.ppt

Key Points

= JANAC (I Am Not A Cryptographer)

= All content of the presentation is work of other people
(reference list is at the end)

= Just like the electrical grid changes at home,
cryptography design is better left to professionals

= At the very least, call an inspector afterwards - but before
powering up the circuit!

= Wisdom ignored by the original 802.11 group
= Professionals have already fixed the problems
discussed here
= Buy WPA (802.11i) gear

\ i 802.11 Security Story

Basic 802.11 (1999) defines “wireless equivalent
privacy” (WEP)

= Uses RC4 cipher

= Multiple holes found; group alerted by Jesse Walker

WEP holes fixed in so called TKIP scheme

A clean RSN encryption scheme is introduced that
uses new AES cipher

TKIP and RSN are defined in the 802.11i standard

Industry body (WiFi) defined WPA security standard
that mostly matches the 802.11i

802.11i and WPA are outside of scope of this talk

\ i Basic Crypto Terminology

= Encryption turns Plaintext into Ciphertext
using a secret Key

= Decryption is the inverse transform

« If the key is the same for encryption and
decryption (“'shared secret”, known to both sides),
the algorithm is “symmetric”

= Authentication provides a way to check that
the message has not been altered
= Usually in the form of a cryptographic checksum -

Message Authentication Code (MAC, called MIC in
the 802.11i)

\ i Basic Terminology Continued

= Crypto algorithm usually consists of a
Cipher and Mode

» Cipher is a way to randomize data.
Examples: DES, AES, RC4, ...

=« Mode is a way to apply the cipher to the
plaintext

=« Simplest mode is Electronic Code Book, or
ECB: plaintext is XORed with pseudo-
random “keystream”

% ECB Mode or “Vernam Cipher”

Encryption Key K ‘ -

Random byte b

Plaintext data byte ‘ - Ciphertext data byte
P 4

Keystream

Decryption works the same way: p=c® b

From an original slide by Jesse Walker

Application of ECB to Packet
Networks

= Packets can be lost
= Cipher has to be restarted for each packet

= Re-use of keystream is extremely bad!

= If we can guess content of one packet, we can recover the
keystream — and read all the packets with the same
keystream

= Simply XORing two packets with the same keystream yields
a lot of information about the data
= Confucius says, "It is better to transmit packet
unencrypted than to reuse the keystream”
= In the former case, only the data in this packet is divulged

= In the latter case, information about keys is divulged — this
and a lot of other packets can be decrypted!

\ i Initialization vector

= Unique data added to each packet and used
to initialize pseudo-random generator to
make the keystream unique
= Called “initialization vector” (IV), “salt”
= Must not be reused with the same key!

= 10 avoid the IV reuse certain mechanisms
should be included into crypto exchange

= Some way to avoid using the same IV with the
same key

= Some way to force a key change once IV space is
exhausted

IV Flaw in WEP

= Key is shared by all stations in the network
= No standard way to synchronously change the key

= IV contains only 24 bits
= No IV synchronization techniques are defined across multiple
stations
= Due to the “birthday paradox”, with randomly chosen
IVs, a “collision” (IV reuse) will very probably happen
after about O(212) = 5000 packets

= Many implementations use same IV sequence (usually O, 1,
2, ...) for all stations thus providing even more collisions ®

i More Basics: Replay Attack

A replay attack is simply a re-transmission of the previously
recorded message later in an attempt to harm the recipient

How can it harm?

= By divulging information about the system being attacked. For
example, one can find out if some PC is powered on by re-sending
messages to it and seeing if a response still comes

= By exploiting the replay in a combination with some other
vuInerablll(tjy For example, if A has established a secure channel
with B, and we can replay to B A's disconnect message, we might
have a chance of attack against A pretending to be B. For more
spectacular opportunities, see WEP examples later.

Typical prevention of this attack is a protected (encrypted or
checksummed) timestamp of some kind

\ i Flaw in the Join Exchange

= [0 join the 802.11 network, station has to
“authenticate” itself
= Open authentication
= Station sends a message "I am a good guy”
= Access point replies, “Yeah, you are a good guy” ©
= Think it is bad?
= Shared key” authentication is worse!

= Station sends a message, “I am a good guy”

= Access point replies, “Show me that you know the key — here is
128 bytes for you to encrypt”

= Station sends an encrypted copy
= Access point compares and says, “You are a good guy”

= What is wrong in this picture?

i Keystream is easy to get

If an attacker can listen on to this exchange, (s)he will see:
= Plaintext in the second message
= Corresponding ciphertext in the third
= As we know, in WEP ciphertext = plaintext XOR keystream
= But ... ciphertext XOR plaintext = keystream!
= We just got a way to encrypt some short frame and inject it into
the system
= Helps as a basis for inductive attacks (detailed below)
= Useful for network study
= Send a frame that will cause a reply (say, ARP), listen to reply
= Replies are predictable = more keystreams
= Never enable the “shared key” authentication

= Not useful for its original goal — as with one known keystream an
attacker can always successfully authenticate anyhow ©

= On-demand keystream by spoofing the access point

\ i Replay Flaw in WEP

= Original 802.11 only carried a
timestamp as a 12-bit frame number in
the unencrypted header
= Not protected
= Wide open for replay

= Combined with a weak design of the
cryptographic checksum (next flaw),
opens WEP up for elegant attacks

\ i Crypto Checksum

= Encrypted frame in the original 802.11 WEP:

«— Encrypted (Note) ——»

IV Data Icv
4 (PDU) 4

>=1

= Why do we need a checksum (ICV)?
= To prevent bit-flipping attacks

\ i More Basics: Bit-flipping

= Take an encrypted message, and change one bit. With ECB,
decryption of this message will yield plaintext with the
corresponding bit changed

If an attacker knows an IP address in the frame, (s)he can
change the address to his own, replay the frame, and receive a
decrypted message from an AP over the wire ©

Prevented by using a crypto checksum

Checksum changes when bit changes

On the receiving side, if the checksum does not match, message
should be discarded

Attacker now needs to change the desired bit(s) and the checksum
bits simultaneously

With many bits to change simultaneously, attack becomes
impractical

Only works if the checksum bit changes are not predictable

\ i Weak Checksum in WEP

= WEP uses CRC-32 for crypto checksum
= Perfectly good for data integrity
= Unacceptable for cryptography

= CRC-32 is linear
= CRC (X2Y) = CRC (X) ~ CRC (Y)
= If an attacker flips the bits in the message, it is easy
to flip the corresponding bits in the checksum
= NewlICV = OIdICV ™ ICV(modified bits)
= Carries through the encryption stage
= TCP checksum can be guessed with high probability

= Flip the address bits in the IP packet and receive it
decrypted — No Key Knowledge Necessary ™

\ i Inductive Attack (Bill Arbaugh)

= Take a short message with known keystream that
solicits a response from the system
= Basis is provided by the Join sequence flaw

= Or look for a short message with a known plaintext (say, a
DHCP request)

= Insert a byte into it just before the ICV

= Try all 256 byte values, adjust the ICV accordingly
= One will yield a response

= The known keystream is extended by one more byte
= Repeat

Ultimate Flaw (Shamir et al.)

= Ultimate defeat of the encryption is to recover the key in a
reasonable amount of time

= WEP uses RC4 as a cipher

= Mantin and Shamir in 2001 figured out a way to easily
distinguish between the RC4-encrypted data stream and a
random data stream

= Confucius says, “If your cipher is a bad random number
generator, it will be broken soon”

= In few months, multiple effective attacks on RC4 were
suggested

= The simplest one will be explained (touched?) here, based on an
article by Fluhrer, Mantin, Shamir

= Grossly simplified for presentation reasons. Actual attacks are
similar in nature, but are significantly more complex

RC4

= Popular cipher still widely used
= Invented by Rivest in 1987, trade secret of RSA
= Leaked onto Internet in 1994 as “Alleged RC4"”, or ARC4

= Convenient for implementation on a CPU
= Only byte-level operations are used, no bit shuffling

= For randomization uses an internal “state” array S of
size N and two indices into this array, i and j
(sometimes referred to as x and y)

=« Sis initially filled with a randomization of the key K of length
L during so called “"Key Scheduling Algorithm” (KSA)

= S is updated during the random number generation phse
(PRGA)

Details of the RC4

KSA(K)
Initialization:
Fori=0...N -1
S[i] =1
7=0
Scrambling:
Fori=0...N-1
j=7+S[{]+ K[i mod /|
Swap(SIil, SLj)

PRGA(K)
Initialization:
1=10
g=0
(Generation loop:
1=1+1
j =+ 5

Swap(S[i], S[j])
Output z = S[S[¢] + S[j]]

From an article by Fluhrer, Mantin, Shamir

Attack Assumptions

= First bytes of plaintext are known
= True for 802.11, as practically all encrypted frames are prefixed by
an “"LLC header” that consists of known bytes
= Part of the key is known, so we can look only at the “easy”
packets

= True for 802.11 WEP, as the RC4 key (K) in WEP is made by
concl:(atenating the 3-byte IV and the secret key — and all the 1V bits
are known

= For simplicity, we will assume that IV occupies first three bytes of K
(in the actual WEP, the IV is appended to the key, making attack
explanation way harder)

= One can observe multiple packets with different “easy” keys
= True for 802.11 due to its wireless nature and varying IVs

\ i Attack Idea

= First byte to be output (look at the PRGA):
= S[S[1]+S[S[1]]]
= What would the S values be?
= Let’s suppose we know A bytes of the secret key
(initially A=0, of course)
« Wait for the packets with IV of the values (A+3,
N-1, X) with a variety of Xs
= We can predict key setup behavior until step A+3
= Or learn that it is became randomized (“resolved”)

Fori=0...N—1
j=7j+S[i]+ Kl[i mod /]

| i Key Expansion Suap(51. S

A+3 | N-1 X K3 K[A+ 3]
0 1 2 A+3
A+3 1 2 0
1o J0
A+3 [N-1] X | K[3 K[A + 3]
0 1 2 A+3
A+3 0 2 1
1 J1
A+3 | N-1 X K[3] K|[A+ 3]
0 1 2 A+3
A+3 0 S[2] Syl
1A+43

Getting the Key

= If the subsequent key setup steps will change any of the first
values of S, we will be in a “resolved” situation with near-
random output
= However, in the 5% cases these values will not be touched, so:
= S[1]=0, S[S[1]] = A+3
= The output, S[S[1]+S[S[1]]] = K[A+3]
= Bingo — we have just learned an extra key byte!
= If we observe enough frames with this type of IV, we will see a
peak in distribution
= 60 frames give 50% probability
= Note that things are not that bad — these are special 60 frames!

= In practice, few million frames are sufficient to crack the 40-bit
WEP key

= 128-bit key does not buy much extra protection — as the process
has /inear complexity

i Practical Consequences

= Security of the “original” 802.11 (as defined in 1999)
IS not too bad if nobody is after you

= It is disastrous if somebody does want to get you!

= Resources required to breach the security are freely
available to an amateur

= [ime commitment is in minutes to hours

= OK for home use?

= Protects from casual or accidental browsing of non-
computer-savvy neighbors

= In my home, connects to the Internet side only, not the
internal network

= Unacceptable for large businesses
= Use WPA (802.11i) gear

\ i References

Full bibliography is available at Bill Arbaugh’s site:
http://www.cs.umd.edu/~waa/wireless.html

802.11 study by Jesse Walker (2000), Unsafe at any
key size; An Analysis of the WEP encapsulation (link

embedded)

Bill Arbaugh’s inductive attack (2001),
http://www.cs.umd.edu/~waa/attack/v3dcmnt.htm

Key recovery by Scott Fluhrer, Itsik Mantin, and Adi
Shamir http://www.drizzle.com/~aboba/IEEE/

rc4 ksaproc.pdf

