
1/26/2006 1

Instant Websites using
Ruby on Rails

Tyler Kovacs

tyler.kovacs@zvents.com

CoolTech Club

Jan 25, 2005

1/26/2006 2

Tonight’s Discussion

� What is Ruby On Rails?

� Why would you use Ruby on
Rails?

� What class of applications is is
appropriate for?

� How does it differ from other
approaches?

1/26/2006 3

Zvents

� Concept to market 6 months/one
programmer

� No performance issues

� Highly satisfied

� We’re hiring!

1/26/2006 4

What is Ruby On Rails?

� What is Ruby?

� Programming language

� “successful combination of SmallTalk’s
conceptual elegance, Python’s ease of
use and learning, and Perls’ pragmatism”

- Curtis Hibbs

� What is Ruby on Rails

� A framework for developing web
applications

� Written in Ruby

1/26/2006 5

Why Ruby?

� Interpreted, dynamic, flexibly typed
language

� Easy to learn and maintain

� Single Inheritance + Mixins

� “Duck Typing”

� Language stays out of the way

1/26/2006 6

Duck Typing

� “If it walks like a duck, and quacks
like a duck, it’s duck”

� If an object responds to a
message, it’s of an appropriate
type.

� Method calls are viewed as
messages

� Undefined methods can be
handled by the object

1/26/2006 7

Inheritance/Extending

� Single Inheritance

� Can mixin modules

� Effectively multiple inheritance

� You can add methods to any class

� String, Date, Thread

� This is not extending the class, this
modifies the original class for
everyone!

1/26/2006 8

Why Not Ruby?

� Performance

� Similar to Perl and Python

� This is not an issue for many
websites.

� Threading model

� Does not use native threads

1/26/2006 9

Ruby on Rails

� Extremely productive web
application framework developed
by David Heinemeier Hansson

� MVC (Model / View / Controller)

� Open-source

� Low learning curve

� A working app in literally minutes

� Version 1.0

1/26/2006 10

Framework Means…

� Rails builds a skeleton, and you
flesh it out.

� All layers designed to work together

� Many decisions are made for you.

� Convention over Configuration

� This is a good thing for new
applications, but can be a bit of a
burden if you need to adapt to
legacy systems.

1/26/2006 11

Convention over Configuration

� Manual configuration replaced with
convention and reflection

� Your data schema and code is the
configuration

� Less configuration files, no
compilation – changes take effect
immediately (in development –
restart required to pick up some
changes in production)

1/26/2006 12

What does Rails Do?

� It covers almost all of what you
need to do for a typical web app,
from creating the app, through
deployment.

1/26/2006 13

Some of what Rails does

� Builds The MVC Application Skeleton

� Code Generation

� ORM

� UI

� Templates

� Javascript/Ajax Helpers

� Logging

� Deployment

� Testing/Benchmarking, etc.

1/26/2006 14

MVC Application

� Rails generates a nicely laid out
MVC application

� Saves wasting time on deciding
how to build the app.

� Generates code/scaffolding for
Models/Views/Controllers

1/26/2006 15

1/26/2006 16

Getting started

� Generate an application
skeleton with one
command:

$rails ctc
create app/controllers

create app/helpers

create app/models

create app/views/layouts

…

� Start the web server
(Rails comes with one
bundled)

$ ruby script/server

1/26/2006 17

Getting started

� Connect with your browser

http://localhost:3000/

� Create a ‘Hello World’
page:
$ rm public/index.html

$ ruby script/generate controller welcome

$ vi app/views/welcome/index.html

� Make the welcome page the
default route
$ vi config/routes

� Set up your databases
$ vi config/database.yml

1/26/2006 18

Rails Environments
� Rails has 3 environments

� Development

� Test

� Production

� Always running within the
context of one of these
environments

� Determines database

� Affects behavior of
framework (e.g., mail
delivery and caching
disabled in test, etc.)

1/26/2006 19

Database/ORM

� ActiveRecord

� Dynamically mapped from the
database

�Maps in-memory Ruby objects to
persistent database store

� Unlike hibernate, schema definition
is not duplicated in code.

Creating a Model Object

$ ruby script/generate model Commercial

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/commercial.rb

create test/unit/user_test.rb

create test/fixtures/commercials.yml

1/26/2006 21

What do we get?

� Empty class or surprising
functionality?
class Commercial < ActiveRecord::Base

end

� Automatically mapped to users
table using pluralization rules

CREATE TABLE commercials (

id INT(32) UNSIGNED NOT NULL AUTO_INCREMENT,

firstname CHAR(64) DEFAULT “”,

lastname CHAR(64) DEFAULT “”,

PRIMARY KEY(id)

);

$ ruby script/console

> c = Commercial.new

=> #<Commercial:0x392d660
@attributes={“id"=>nil, “firstname"=>"“,
“lastname"=>""}, @new_record=true>

>> quit

� script/console allows you to access Rails
objects from the command line

� Same mechanism can be used to scripts
within the Rails environment

1/26/2006 23

Extending Model Objects

� Add methods to model class
class Commercial < ActiveRecord::Base

def full_name

return self.firstname + “ “ + self.lastname

end

end

� Model methods determine how you
(programmer) interact with model
objects

1/26/2006 24

Assocations

� Define the relationship between
objects

class Commercial < ActiveRecord::Base

has_many :comments

end

class Comment < ActiveRecord::Base

belongs_to :commercial

end

1/26/2006 25

Assocations

� Adds methods to access
associated objects

commercial = Commercial.find(id)

commercial.comments.each{|c|

puts c.name

}

� Can model one-to-one, many-to-
one and many-to-many
relationships

1/26/2006 26

Validations

� Specify constraints on the object

� Object can’t be saved if not valid

� Built-in validations

:validates_presence_of

:validates_length_of

:validates_uniqueness_of

:validates_format_of

…

� Define your own named validations

� Arbitrary code in validation method

1/26/2006 27

Callbacks

� Automatically execute code on
object lifecycle events (create,
validate, save, update, destroy)

� Before and After hooks

before_save

after_save

before_destroy

after_destroy

…

1/26/2006 28

Callbacks

class Commercial < ActiveRecord::Base

def before_create

self.created_at ||= Time.now

end

def before_update

self.updated_at ||= Time.now

end

end

1/26/2006 29

Transaction Support

� Database transaction support

Account.transaction do

david.withdrawal(100)

mary.deposit(100)

end

� Database and model object transactions

Account.transaction(david,mary) do

david.withdrawal(100)

mary.deposit(100)

end

1/26/2006 30

Finding Objects

� Find by id
Commercial.find(id)

� Dynamic finders

Commercial.find_by_name(“monster.com”)

Commercial.find_all_by_name(“monster.com”)

� Find By SQL
Commercial.find_by_sql(“SELECT * FROM
commercials WHERE name =
‘monster.com’”)

1/26/2006 31

Finding Objects

� Complex finders with eager loading
name = some_dynamic_value

Commercial.find(:all, :conditions => [“name = ?”,
name], :include => :comments, :order =>
“created_at DESC”)

� Finds can be scoped to an association

c = Commercial.find(1)

c.comments.find(:all, :conditions =>
[“created_at > ?”, Time.now – 1.day])

1/26/2006 32

Find works on associations too

� Same finder can be used to search for
objects scoped to a specific association

c = Commercial.find(1)

c.comments.find(:all, :conditions =>
[“created_at > ?”, Time.now – 1.day])

1/26/2006 33

Controller

� Handles incoming requests to web
application

� May interact with model object(s) if
necessary to satisfy this request

� Renders a view which is sent back as
a response

� Controller methods define how a user
interacts with application

1/26/2006 34

Controller

class CommercialController < ActionController::Base

def show

@commercial = Commercial.find(@params[‘id’])

end

def delete

@commercial = Commercial.find(@params[‘id’])

@commercial.destroy

end

end

1/26/2006 35

1/26/2006 36

Creating Controller and View

� ruby script/generate scaffold Meeting

� Builds a controller and several views

� Basic CRUD Application

1/26/2006 37

Views

� Generates HTML/XML/Email that is sent
back to in response to a request

� RHTML templates very similar is concept
to ASP and JSP

� Helpers make Javascript and AJAX easy
to use

� Rails comes bundled with prototype.js
and script.aculo.us libraries

1/26/2006 38

Views

app/views/commercial/show.rhtml:

<h1>Commercial: <%= @commercial.name %></h1>

<% for comment in @commercial.comments %>

<%= comment.text %>

<% end %>

� Where’s the rest of the page with the
<HTML> and <BODY> tags?

� Layouts wrap the view

1/26/2006 39

Logging

� Rails logs provide a wealth of
information out of the box

� Log levels adjusted depending on
current Rails Environment

1/26/2006 40

Execution

times for

all SQL.

Total page time Render time Total DB time

Log File

1/26/2006 41

Breakpoints

� Breakpoints can be inserted
anywhere in your code path

� Connect to the breakpoint by
running:

$ ruby script/breakpointer

1/26/2006 42

Testing

� Rails includes test framework

� Rails generates test code skeleton

� Unit and functional tests

� Simulated HTTP

� get :index, post :update_password

� assert_response :success

� Fixtures

� Mock Objects

1/26/2006 43

Mock Objects

� Mock objects can be very easy,
using Ruby

require ‘models/purchase_order’

class PurchaseOrder

def accept

return true

end

end

Use the real object
Override only the

methods you need

to.

1/26/2006 44

Simple Code Statistics

� rake stats

� Delivers simple code stats
including:

� LOC

� Class and Method counts

� Test to code ratio

1/26/2006 45

Web Services

� Built-in mechanism to deliver
SOAP and XML/RPC web services

� Basically as easy as writing a
controller

� Roll your own REST API using
XML builder templates instead of
the standard RHTML templates

1/26/2006 46

Automated Deployment

� Switchtower is Rails’ Deployment
Tool

� Deploys code directly out of your
repository

� Database migrations

� Transactional

� Can roll back changes, if
necessary

1/26/2006 47

Is that it?

� There’s MUCH more, but we don’t
have time for it tonight:

� Cookies and session management

� Caching

� Pagination

� Form helpers

� ActionMailer

� AJAX helpers

� Etc.

1/26/2006 48

Why Use Ruby on Rails?

� Agile

� Fast Time to Market

�Quick changes

�Quick to Learn

� Complete solution

� Don’t have to worry about

�What will I do for logging,
deployment, testing….

1/26/2006 49

Why Not Use Rails?

� CPU speed

� Ruby is currently not a fast language

� Neither was Java when it started

� Bottleneck in many web apps is database
or IO bandwidth

� If your app is CPU bound Ruby may not
be the right choice

� If your app is not a good fit with the
framework

1/26/2006 50

Documentation

� Buy The Books

� There is much less good online
documentation than there is with
Java.

1/26/2006 51

Try it yourself!

� Download and install

� http://rubyonrails.org/

� Watch the videos

� http://rubyonrails.org/screencasts

1/26/2006 52

Reminder

� Did I mention that we’re hiring?

