

How to build a Carrier-Grade Defense-Shield

Agenda

Security Market Landscape

Approach to Efficiently and Shortly Detect DDoS/Worms

Take a walk on the Security Landscape

Backbone Market Evolution

PAST

Carriers treated data as "opaque"

-"Bits were bits" - they just passed traffic

Security was firewall based

- Endpoints were under attack, but not the network itself
- Fewer IP security risks (mostly viruses)

Security based on Firewalls

- Enough to protect the networks

PRESENT

Traditional carriers evolve

- Data outpaces circuit switched
- IP/MPLS Super-core emerges
- FM Convergence

CodeRed worm changed the threat landscape

- Security threats became commercially motivated
- Threats targeted network rather than endpoints
- Networks are larger and more open
- Attacks are highly distributed (DDoS)

Security based on IDS/IPS

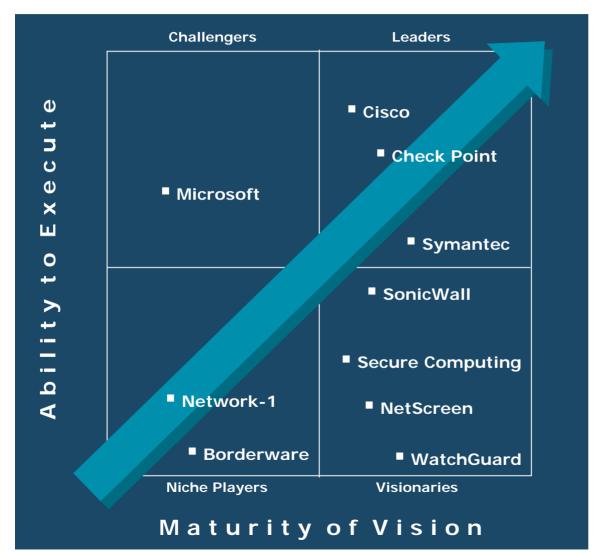
- Appliances start to scale at very high-speed line-rate
- Enough to protect the network from DoS/DDoS IF close to the victim
- The appliance model is TOO expensive

FUTURE

Full IP Convergence: any network, any device

- IMS Super-access will emerge
- Carriers will monetize IP Services

New types of potential threats emerge


- Threads will target more and more IP services
- Attacks will be more and more distributed
- Polymorphic worms will emerge

Security based on IP Systems

- From Appliances to Systems
- Ability to collect information from any network element
- Ability to have fine-granularity visibility into traffic
- Ability to digest large amount of traffic

Market Snapshot 2001

\$2.4B Market

Single category

Gartner Magic Quadrant for Firewalls update 2001

Backbone Market Evolution

PAST

Carriers treated data as "opaque"

-"Bits were bits" - they just passed traffic

Security was firewall based

- Endpoints were under attack, but not the network itself
- Fewer IP security risks (mostly viruses)

Security based on Firewalls

- Enough to protect the networks

PRESENT

Traditional carriers evolve

- Data outpaces circuit switched
- IP/MPLS Super-core emerges
- FM Convergence

CodeRed worm changed the threat landscape

- Security threats became commercially motivated
- Threats targeted network rather than endpoints
- Networks are larger and more open
- Attacks are highly distributed (DDoS)

Security based on IDS/IPS

- Appliances start to scale at very high-speed line-rate
- Enough to protect the network from DoS/DDoS IF close to the victim
- The appliance model is TOO expensive

FUTURE

Full IP Convergence: any network, any device

- IMS Super-access will emerge
- Carriers will monetize IP Services

New types of potential threats emerge

- Threads will target more and more IP services
- Attacks will be more and more distributed
- Polymorphic worms will emerge

Security based on IP Systems

- From Appliances to Systems
- Ability to collect information from any network element
- Ability to have fine-granularity visibility into traffic
- Ability to digest large amount of traffic

\$8B

Much broader category

New set of leaders

Backbone Market Evolution

PAST

Carriers treated data as "opaque"

-"Bits were bits" - they just passed traffic

Security was firewall based

- Endpoints were under attack, but not the network itself
- Fewer IP security risks (mostly viruses)

Security based on Firewalls

- Enough to protect the networks

PRESENT

Traditional carriers evolve

- Data outpaces circuit switched
- IP/MPLS Super-core emerges
- FM Convergence

CodeRed worm changed the threat landscape

- Security threats became commercially motivated
- Threats targeted network rather than endpoints
- Networks are larger and more open
- Attacks are highly distributed (DDoS)

Security based on IDS/IPS

- Appliances start to scale at very high-speed line-rate
- Enough to protect the network from DoS/DDoS IF close to the victim
- The appliance model is TOO expensive

FUTURE

Full IP Convergence: any network, any device

- IMS Super-access will emerge
- Carriers will monetize IP Services

New types of potential threats emerge

- Threads will target more and more IP services
- Attacks will be more and more distributed
- Polymorphic worms will emerge

Security based on IP Systems

- From Appliances to Systems
- Ability to collect information from any network element
- Ability to have fine-granularity visibility into traffic
- Ability to digest large amount of traffic

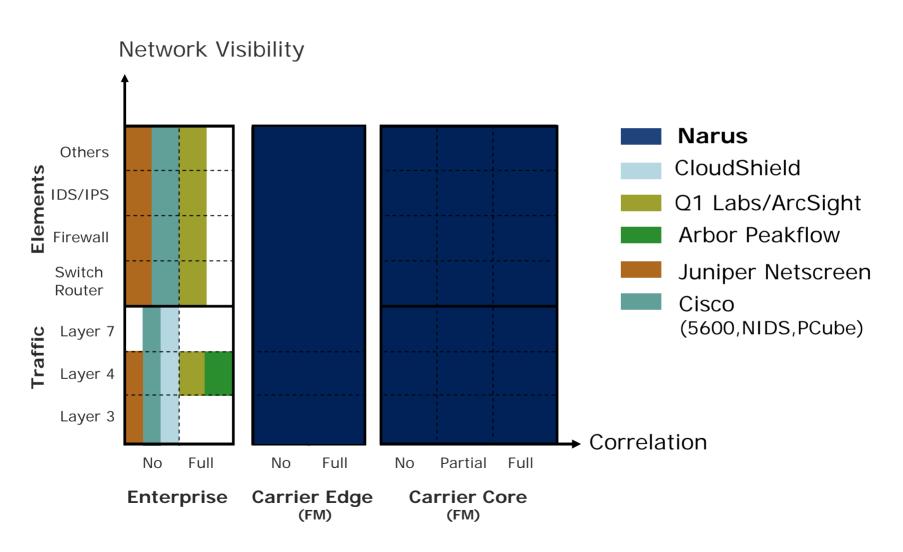
N A R

A New Category Emerges

- Technology inflection
 - Rapidly expanding protocols and services (VOIP, Mobile-IP, IMS)
 - Inflections demand next generation performance
 - Today's architectures provide limited scaling
 - Services require capture layer 3,4&7 data at OC48 and OC192 speeds
- Increasing Demand over time
- Few entrants, very little competition
- Technology inflection
 - + market acceptance + little competition
 - = a new category

Security Defense-Shield: Requirements

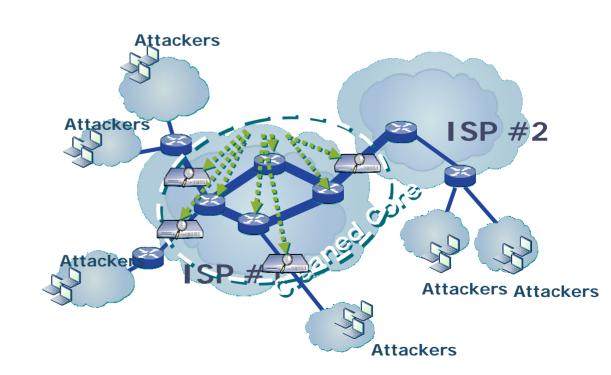
- Full Control of the Network requires a Unified Vision of the Network
 - Point Solutions can be ineffective for distributed attacks
- IP Traffic Granularity
 - Centralized Normalization and Correlation of multiple source of data
- Cutting-edge Algorithms
 - Adaptive


- Scalable

Efficient

High-performance

Let's take a snapshot at the market



Bounce the Attacks at the Edge: Defense-Shield

Example:

DDoS and Worms

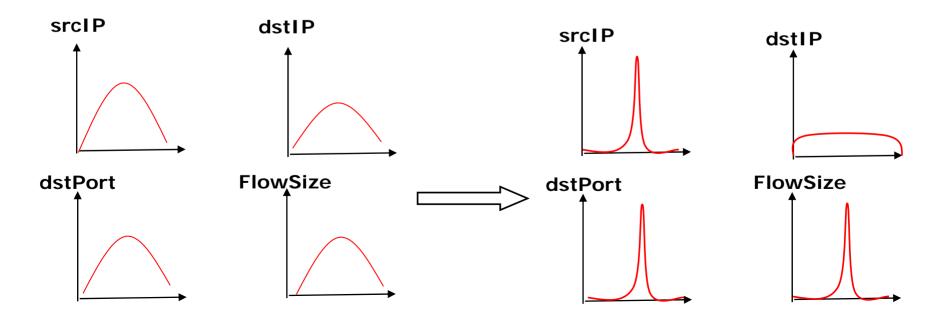
"Attacking a System" is equivalent to "Perturbing its Equilibrium-Point" NARUS®

- Each Element in the Universe obeys to Physical Laws
- Any perturbation applied to any stable system breaks the system's equilibrium
- Internet is a Physical System that obeys to Physical Laws
- Internet Traffic is structured in some ways (invariant component) and very random in others (variant component)
 - Users are methodic and unpredictable at the same time
- Threads represents a "deterministic" actions that affect the equilibrium of the system:
 - Strong Temporal Coordination across Attackers (DDoS)
 - Abnormal large host-population contacted by Infected Host (Worm)

Detect a perturbation of equilibrium-point NARUS®

Information Entropy:

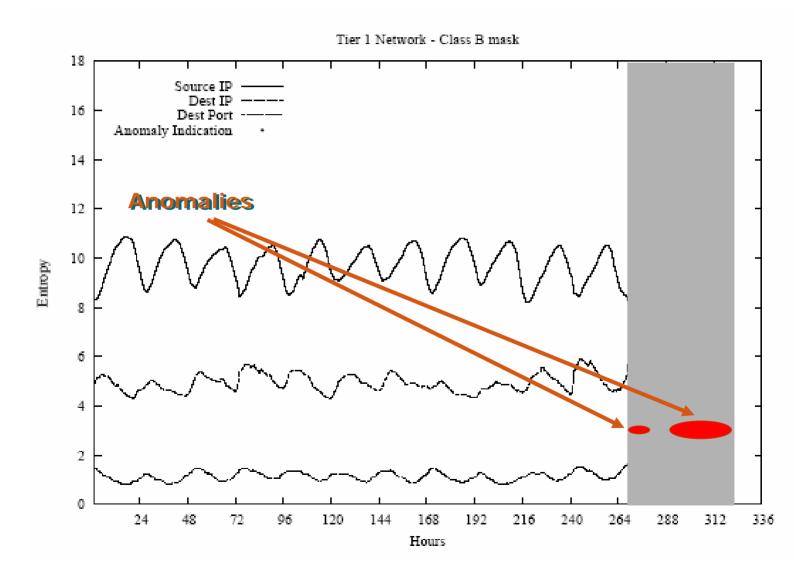
- DDoS, Worms, etc, disrupt over time the "structure" and "randomness" of key traffic features
- Information Entropy is a powerful operator to detect a change in traffic distribution on-fly:


$$H_i^X = -\sum_{p \in P_i^X} p \log_2 p$$

- Skew-distribution: low-entropy / Flat-distribution: high-entropy
- Information Entropy can be well approximated by well-known data mining algorithms
 - Requires a few CPU cycles
 - Requires bounded memory
- DDoS & Worms disrupt the key-feature distributions

Change of distributions when under attack, example Worm

- Key Traffic Features: <SrcIP>, <srcPort>, <dstIP>, <dstPort>, <FlowSize>:
 - A few srcIP -> many dstIP
 - Specific Application Vulnerability -> ONE dstPort (it can be different)
 - Small flows become dominant


High-Level Sketch of the Algorithm: example, Worms

- Step #1: Based on Layer-4 information
 - Extract the marginal distributions of five key features:
 - o <SrcIP>, <DstIP>, <SrcPort>, <DstPort>, <FlowSize>
 - Compute <u>Entropy</u> for the above marginal distributions
 - Mark malicious flows as "suspicious"
 - Hosts for which a deviation of the GlobalMetric is observed
 - Generate a flow-filter mask using key features for which a drop in the entropy is observed
 - Example, <SrcIP, DstPort, FlowSize>
- Step #2: Based on Layer-7 information
 - Apply flow-filter mask to isolate and deeply-analyze ONLY "suspicious" flows
 - Extract Worm-Signatures ONLY for "suspicious" hosts
 - Rabin, Longest-Common-SubString, Longest-SubSequenceString, etc

Algorithm in action: Tier-1 Wireless Network

Results from Tier-1 Network (Sasser): TCP Port 445 – The 1st Hour

- The first uptick in TCP Port 445 traffic happened on 8/31/05 between 9:00 to 10:00 AM
- This NarusView drilldown on the first hour revealed that TCP Port 445 traffic was generated almost totally by one Subscriber Client X
- During the first hour, a distinctly "deterministic" number of sessions (e.g., 4) were set up by subscriber X to numerous IP servers, symptomatic of worm propagation

Results from Tier-1 Network (Sasser): TCP Port 445 – The 13th Hour

- The second significant uptick in TCP Port 445 traffic happened 12 hours later, from 9:00 to 10:00 PM on 8/31/05
- This NarusView drilldown on the 13th hour revealed that the number of Subscriber Clients generating TCP Port 445 traffic had grown to 6
- On the 13th hour, distinctly "deterministic" number of sessions (e.g., 4, 14) were set up to numerous IP and Subscriber servers, again symptomatic of worm propagation

Results from Tier-1 Network (Sasser): TCP Port 445– The 21st and 22nd Hours

- The third significant uptick in TCP Port 445 traffic happened 7 hours later, from 5:00 to 7:00 AM on 9/1/05
- This NarusView drilldown on the 21st and 22nd hours revealed that the list of Subscriber Clients generating TCP Port 445 traffic had grown further to 12
- During the 21st and 22nd hours, distinctly "deterministic" number of sessions continued to be set up to numerous IP and Subscriber servers, symptomatic of worm propagation

Thanks

QUESTIONS?

Thanks

Thanks

Thanks